
3 OR-Tree Search

This chapter addresses a problem which we shall refer to as ‘OR-tree’ search14.

The model that we address can be viewed as an investigation into the truth

of a logical expression, L, which is a finite conjunction of logical primitives,

li. L is a logical expression iff one of the following is true:

1. L is a logical primitive.

2. L ≡ (X ∪ Y), where X and Y are both logical expressions.

The symbol ‘∪’ represents the customary binary Boolean ‘OR’ operator,

which is associative, and so the above definition implies the following:

L ≡ l1 ∪ l2 ∪ . . . lN

For proofs, different types of logical primitive will be differentiated by nu-

merical subscripts. However, when giving examples, we shall refer to logical

primitives by capital letters, A, B, C . . . so that a numerical subscript can

be added to distinguish between logical primitives of the same type.

Sometimes it will be useful to have a label for logical expressions other

than primitives. e. g. Y ≡ (A∪B). These we shall refer to by using uppercase

letters, starting from X. Again, independent copies will be distinguished by

use of numerical subscripts.

14The reader interested in rule-based methods of theorem proving should note that this

chapter — indeed this thesis — does not contain any material of direct relevance.

65

3.1 Deterministic Case

We begin our consideration of this problem by restricting our attention to

the case in which every logical primitive is a box. By box we mean a logical

primitive which, when searched, will be shown for certain to be either true

or false. The time taken to search a box may be a random variable, but

we require that the expected time required to search it, t, is known. The

probability, p, that it contains an object is also known.

We take the term ‘box’ from a classic and well-discussed case — see

Dean [22], Joyce [35], Mitten [52] and Sweat [83] amongst others — which

involves the search of a set of N boxes. In terms of the original model, pi

is the probability that box i contains an object, which is found if search is

carried out on that box. We can view L, therefore, as the statement “one or

more of the boxes l1 . . . lN contains an object”. We seek to deduce a search

policy which can determine, for sure, the truth of a general logical expression,

L, in the smallest possible expected time.

This search is termed satisficing, since it aims to find a solution which

is good enough for some specified purpose. It is to be contrasted with an

optimising search which aims to find the best solution available. In contrast

to an optimisation, satisficing search does not necessarily have a solution –

in this case search proceeds until all the possible solutions have been shown

not to meet the constraints which define what is ‘good enough’, whereupon

the search terminates unsuccessfully. If, however, a solution is found, search

may be terminated immediately.

66

We shall assume for simplicity that a search of a box which contains an

object is certain to be successful, that is, an object will be found, although

this restriction will be relaxed in Section 3.7.

Search continues until an object is detected, or until all the boxes have

been unsuccessfully searched. A policy is termed optimal if it searches boxes

in such a way that it minimises the payoff, V , equal to the expected time

until termination.

In the model described above, each policy can be identified with what

Kadane and Simon [37, 77] term a strategy, that is, a permutation of the

integers from 1 to N . A strategy, A, represents the policy which searches the

boxes in the order of the integers given by A, ceasing as soon as an object is

detected or if all the boxes have been searched.

Consider an arbitrary strategy, A = {a1, a2 . . . an}. Using x to represent

the state, we denote by VA(x) the expected termination time of applying

strategy A to search the boxes. We shall use qi to denote the probability

that an object is not found when box i is searched, and pi = 1 − qi.

Hence:

VA(x) =
N∑

i=1

tai

i−1∏
j=1

qaj

We now modify A by interchanging the kth and k + 1th elements to ob-

tain A′ = {a1, a2 . . . ak−1, ak+1, ak, ak+2, . . . an}, and consider the payoff from

applying this modified strategy:

67

VA′(x) =
k−1∑
i=1

tai

i−1∏
j=1

qaj
+ tak+1

k−1∏
j=1

qaj
+ qak+1

tak

k−1∏
j=1

qaj
+

N∑
i=k+2

tai

i−1∏
j=1

qaj

It is instructive to consider the expected difference in the time taken by

policies A and A′:

VA(x) − VA′(x) =
k+1∑
i=k

tai

i−1∏
j=1

qaj
− tak+1

k−1∏
j=1

qaj
− qak+1

tak

k−1∏
j=1

qaj

=
k−1∏
j=1

qaj
(tak

+ (1 − pak
)tak+1

− tak+1
− tak

(1 − pak+1
))

=
k−1∏
j=1

qaj
(pak+1

tak
− pak

tak+1
)

> 0 ⇔ pak+1

tak+1

>
pak

tak

This simple interchange argument shows that strategy A′ is an improvement

upon strategy A if the exchanged boxes, ak and ak+1, were not in decreasing

order of p
t
. If we define the reward rate, Øi = pi

ti
, of a box i, we see that the

optimal policy must therefore be to search the boxes in decreasing order of

Ø.

68

3.1.1 Linear Precedence Constraints

We now suppose that some restrictions exist as to the order in which the

boxes can be searched. Specifically, we consider the case of linear precedence

constraints, as illustrated below.

Figure 14: Linear Precedence Constraints

Such a constraint structure arises if we assume that the boxes are arranged

in N stacks, so that box (i, j) is the jth box in stack i, and the searcher is

limited to searching only the uppermost unsearched box of each stack. The

goal of search, to discover whether there is an object, remains unchanged.

There are now two factors that influence the choice of box; not only the

immediate possibility of finding an object, but also the future benefit from ac-

cess to boxes below must be considered. This problem has a straightforward

solution, first shown by Mitten [52].

Let us begin by considering briefly the case in which the boxes are ar-

ranged so that the Øi decreases from the top of each stack to the bottom.

69

In this case, it is possible to select the boxes in decreasing order of Øi, and

so the same payoff is possible. This is, therefore, optimal by the trivial ob-

servation that restricting the possible actions cannot possibly improve the

payoff. We now show that it is possible for any boxes problem with linear

precedence constraints to find an equivalent one with this structure.

Suppose Ø(i,j) < Ø(i,j+1). We show that this implies that boxes (i, j) and

(i, j +1) belong to the same indivisible block. By this we mean that it cannot

be optimal to immediately follow search of (i, j) by search of any box other

than (i, j + 1). To see this, we compare the payoffs of the following three

policies:

π1: Search some other box(es), k, then box (i, j), then box (i, j + 1).

π2: Search box (i, j), then some other box(es), k, then box (i, j + 1).

π3: Search box (i, j), then box (i, j + 1), then some other box(es), k.

(It is understood that the policies only search if necessary — i.e. that they

terminate if an object is found). Let us denote by pk the overall probability

that the other box(es) contain an object and by tk the expected time to

search them.

Vπ1 = tk + qkt(i,j) + qkq(i,j)t(i,j+1)

Vπ2 = t(i,j) + q(i,j)tk + qkq(i,j)t(i,j+1)

Vπ3 = t(i,j) + q(i,j)t(i,j+1) + q(i,j)q(i,j+1)tk

70

Hence:

Vπ2 − Vπ1 = t(i,j) + q(i,j)tk − tk − qkt(i,j)

= pkt(i,j) − p(i,j)tk

= t(i,j)tk(Øk − Ø(i,j)) (8)

Vπ2 − Vπ3 = q(i,j)tk + qkq(i,j)t(i,j+1) − q(i,j)t(i,j+1) − q(i,j)q(i,j+1)tk

= q(i,j)(p(i,j+1)tk − pkt(i,j+1))

= q(i,j)tkt(i,j+1)(Ø(i,j+1) − Øk) (9)

Equation (8) implies that if Øk > Ø(i,j) then policy π1 achieves a lower

payoff than policy π2, while equation (9) implies that if Øk < Ø(i,j+1) then

policy π3 achieves a lower payoff than policy π2. At least one of these condi-

tions applies, since Ø(i,j+1) > Ø(i,j), and so policy π2 is therefore not optimal.

The solution then proceeds by processing the boxes, starting from the

bottom of each stack, grouping them into indivisible blocks wherever possible.

This process of grouping together separate searches into a single unit we

shall refer to as chunking. Once no more chunking can be carried out, the

indivisible blocks are said to be maximal. In this case, it is a consequence of

the criterion for chunking that the maximal indivisible blocks within a stack

must now be in order of decreasing Ø, and so the optimum policy is just to

search them in decreasing order of Ø.

71

3.2 Stochastic Case

We now increase the scope of the model to cater for a more general class of

logical primitives, to allow dynamic revelation of nodes (previously referred

to as boxes) in the course of search. We assume that all nodes belong to one

of n different types, the details of which are known.

Satisficing search on an out-tree differs from more familiar tree search

models, such as shortest path search, in that the structure of nodes already

searched is of no importance in guiding further search. Apart from the set

of nodes now available for search, the only relevant result of previous search

is whether or not an object has been found. The state of an ongoing search

problem may therefore be represented by x, a vector of length n that contains

the number of nodes of each type that are currently visible.

Subsection 3.3.2 compares the values of different problems and so there

the state of a search will be represented (x,d) where d is a vector of length

n which summarises the details of each type of node.

d = (d1, d2 . . . dn) where di = (pi, ti, fi)

The definitions of pi and ti are unchanged, whilst we use fi(s) to denote

the offspring distribution of node i. This is defined as the n-dimensional prob-

ability distribution of extra nodes revealed when a type i node is searched.

We shall use familiar notation, Vπ(x,d), to refer to the expected time

taken to terminate starting from state x with nodes of type d, when policy π

is applied. In cases where d is fixed, we shall abbreviate this as Vπ(x). The

72

optimal value, V (x) is given by:

V (x) = minπ{Vπ(x)}

A (non-randomised) policy π is a (deterministic) function of a state xπ
i , with

past history, Hi = (x0
π, a1,x1

π, a2 . . .xi
π), where ai ∈ {1 . . . n}. Denote

the τ + 1th action taken by π, as πτ (Hτ). A Markov policy is a policy

which does not take the past history of states or actions into account, so

can be expressed π(xπ
i) = ai. Since this is a one player game, there is

an optimal policy amongst the class of non-randomised Markov policies. We

shall therefore restrict our attention for the rest of this paper to these policies,

so any policy mentioned may be assumed to be both non-randomised and

Markov.

We shall expand the state space by adding the special state, 〈T〉, which

corresponds to having found an object. This must be a trapping state. The

expected time to search for an object from this state is always 0. From any

other state, action a may only be taken if there is a node of that type available

for search. In such a case, the expected time required to take action a is a

constant, ta, so the cost, c(x, a), of taking action a from state x satisfies:

E[c(x, a)] = taIx �=〈T〉

A node type is termed most rewarding if it achieves the maximum reward

rate. A node is termed most rewarding if it is of a most rewarding type. In

the exposition that follows, we use I∗ to denote the set of most rewarding

node types.

73

We define an exhaustive search of type i nodes as a sequence of searches of

type i nodes, which terminates either upon finding an object or when there

are no more nodes of type i available for search, whichever happens first.

Now define a k-exhaustive search of nodes of type i as a sequence of

searches of type i nodes which terminates either as soon as it finds an object

or when there are no more nodes of type i are available, or when it has car-

ried out k searches, whichever happens first. The above defined exhaustive

search is therefore equivalent to an ∞-exhaustive search by this definition.

A simple-minded policy is defined as a policy which carries out an ex-

haustive search of the most rewarding node type(s) whenever possible.

We now explain the equivalence with tree search. Each logical primitive

corresponds to a node in the search tree. If search reveals the node to contain

an object, this is interpreted as discovering that the corresponding logical

primitive is true. We shall disregard degenerate search ‘opportunities’ —

nodes which have no probability of containing an object — and so the only

way to conclude for certain that L is false is to show that each of the Li is

false. This corresponds to the game ending when all the nodes are exhausted.

3.3 Nature of the Optimal Policy

Our analysis proceeds in three stages. In Subsection 3.3.1, we prove that the

optimal policy must be simple-minded. This establishes the optimal action

from states in which there are any most rewarding nodes available for search.

We then show how it is possible to treat an exhaustive search in a similar

74

fashion to the search of a single node. The next section then uses this to

prove Theorem 3.2, which then establishes a connection between a problem

with n node types and a problem with n − 1 transformed node types.

Finally, Subsection 3.3.3 establishes that dynamic programming may be

used to solve the problem by recursive application of Theorem 3.2, prov-

ing the optimal policy to be a simple priority order rule. The structure of

this proof is identical to that of the proof by Tsitsiklis[85] for semi-Markov

bandits.

3.3.1 A Restriction on the Optimal Policy

To simplify the following theorem, we slightly modify our conception of the

game. Suppose that, rather than stopping once an object has been found,

all policies keep searching as long as any boxes are available for search. The

equivalence between the games is maintained by assuming that searches car-

ried out once an object has been discovered are made at no cost. This con-

struction is useful since it allows conditioning upon the states encountered

to be independent of whether or not an object has been found.

The state we denote as (W,X), where X has its previous meaning, and

W keeps track of whether an object has been found, assuming value 0 if an

object has been found, and value 1 if not. Hence:

E[c(W,X, a)] = Wta

Theorem 3.1 A policy which is not simple-minded cannot be optimal.

75

Proof: Consider an arbitrary policy, π, which is not simple-minded.

It is shown that there exists a policy, π′, which achieves a strictly better

payoff. Define the stopping time, N < ∞, as the time at which policy π

first breaks the simple-minded criterion. (That is πN (xN) /∈ I∗, although for

some i∗ ∈ I∗, xπ
Ni∗ > 0 and so i∗ would have been a legal action in state xπ

N).

The payoff achieved by a policy π, Vπ[x], we break into three parts. The

expected cost of actions taken from states X0 up to XN−1 is written A. The

expected cost of actions taken from the state in which policy π first misses

a chance of searching a node of type i∗, XN , until the state in which it next

takes the chance, XM , is written B. The expected cost of actions after this

point is written C. Note that the time at which policy π first takes action

i∗ again, M ≤ ∞, is a stopping time. (If policy π never does, M = ∞ and

C = 0).

Vπ[x] = E

[∞∑
i=0

c(W π
i ,Xπ

i , πi(X
π
i))

]
= A + B + C

where :

A = E

[
N−1∑
i=0

c(W π
i ,Xπ

i , πi(X
π
i))

]

B = E

[
M∑

i=N

c(W π
i ,Xπ

i , πi(X
π
i))

]

= E

[
M−1∑
i=N

c(W π
i ,Xπ

i , πi(X
π
i)) + c(W π

M ,Xπ
M , i∗)

]

C = E


 ∞∑

i=M+1

c(W π
i ,Xπ

i , πi(X
π
i))




76

Figure 15: Alternative Policy π′

Consider a policy π′ which mimics policy π until time N , when π first

misses an opportunity to search a node of some type i∗ ∈ I∗. Policy π′ now

deviates by searching a node of type i∗. This is admissible, since N is a

stopping time. The search of a node of type i∗ may result in extra nodes of

other types being added to the state, but it cannot result in such nodes being

removed. It is therefore an admissible policy to mimic the actions taken by

policy π once more. Policy π′ does this until time M . If M < ∞, then at

this time policy π searches the node of type i∗ which π′ searched earlier, and

the two policies reconverge and play identically once more.

Denoting by x + y the state arrived at from x when a node of type i∗ is

expanded, policy π′ leads to the following series of states:

{Xπ
0 ,Xπ

1 , . . . Xπ
N ,Xπ

N + y,Xπ
N+1 + y, . . . Xπ

M−1 + y,Xπ
M+1,X

π
M+2, . . . }

The payoff achieved by policy π′ we express, as before, as the sum of three

parts: A′ is the expected cost of the first N actions, B′ of the next M − N ,

and C ′ of the remainder:

77

Vπ′[x] = E

[∞∑
i=0

c(Xπ′
i , π′

i(X
π′
i))

]
= A′ + B′ + C ′

Where:

A′ = E

[
N−1∑
i=0

c(W π′
i ,Xπ′

i , π′
i(X

π′
i))

]
= A

B′ = E

[
M∑

i=N

c(W π′
i ,Xπ′

i , π′
i(X

π′
i))

]

= E


c(W π′

i ,Xπ′
N , i∗) +

M∑
i=N+1

c(W π′
i ,Xπ′

i , π′
i(X

π′
i))




C ′ = E


 ∞∑

i=M+1

c(W π′
i ,Xπ′

i , π′
i(X

π′
i))


 = C

Vπ[x] − Vπ′[x] = (A + B + C) − (A′ + B′ + C ′) = B − B′

= E [[E D|πN (Xπ
N) = aN , . . . πM(Xπ

M) = aM]]

We consider D, the difference in expected payoff of policies π and π′,

conditional upon the sequence of actions taken.

78

D =
M−1∑
i=N

c(W π
i ,Xπ

i , π(Xπ
i)) + c(W π

M ,Xπ
M , i∗)

−c(W π′
N ,Xπ′

N , i∗) −
M∑

i=N+1

c(W π′
i ,Xπ′

i , πi(X
π′
i))

=
M−1∑
i=N

W π
i ti + W π

M ti∗ − W π′
N ti∗ −

M∑
i=N+1

W π′
i−1qi∗tai−1

= pi∗
M−1∑
i=N

tai

i−1∏
j=N

qaj
+ ti∗(

M∏
j=N

qj − 1)

= ti∗


M−1∑

i=N

pi∗

ti∗
tai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




Since i∗ is a most rewarding node, pi∗
ti∗

> pi

ti
∀i /∈ I∗.

= ti∗


M−1∑

i=N

pai

tai

tai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




= ti∗


M−1∑

i=N

pai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




> 0

We have now established that the optimal policy is simple-minded. This

is equivalent to stating that it carries out an exhaustive search for most re-

warding nodes at every opportunity. Rather than considering a single search

we now consider search of a type i node followed by an exhaustive search

for nodes of type i∗. We denote as p̂i(i
∗) the probability of finding an object

with such a chuck of search. The expected time taken to search such a chunk

79

we denote t̂i(i
∗), and let us use f̂i(i

∗) to represent the distribution of nodes

revealed. We can now use these values to enable the mathematical treatment

of this chunk of search as if it were the expansion of a single node.

3.3.2 An Equivalence Between Search Problems

This section leads to a theorem which establishes an identity between V (x,d)

and the value of a modified problem V (x′,d′) which has one less node type.

Theorem 3.2 If i∗ is a most rewarding node type then

V ((x1 . . . xi∗−1, 0, xi∗+1 . . . xN), (d1 . . . dN))

= V ((x1 . . . xi∗−1, xi∗+1 . . . xN), (d′
1 . . . d′

i∗−1, d
′
i∗+1 . . . d′

N))

where the transformed node types satisfy

d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗))

Proof: Denote by U ′ the space of strategies applicable to the game

(x′,d′), and by U the space of simple-minded strategies applicable to the

game (x,d). There is a bijection between the two, since any u′ ∈ U ′ may

be expressed as a sequence of substrategies, each of which corresponds to

searching a single node, i.e. u′ = (u′
1, u

′
2...), whilst any u ∈ U may be

represented as a conjunction of sub-strategies ek and uk, where the {e.} are

substrategies that carry out a (possibly zero length) exhaustive search of

nodes of type i∗, and the {u.} are searches of a single node of any type other

80

Figure 16: Policy Spaces U and U ′

than k. The strategy u may be represented as u = (e1, u1, e2, u2 . . .) because

it is simple-minded.

The value obtained by applying strategy u = (e1, u1, e2, u2 . . .) to game

(x,d) is exactly that obtained by applying strategy s(u) = (u′
1, u

′
2...) to game

(x′,d′), since the effects of carrying out an exhaustive search of nodes of type

i∗ are accounted for by the transformations d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗)).

The above bijection argument is easily extensible to policies; if policy π

applies strategy u to game (x,d), define policy s(π) to be the policy which

applies strategy s(u) to game (x′,d′). This includes the optimum policy, π∗,

of game (x′,d′) which Theorem 3.1 tells us is simple-minded:

V (x′,d′) = Vs(π∗)(x
′,d′) = Vπ∗(x,d) = V (x,d)

81

3.3.3 Proof of Optimal Policy

Theorem 3.3 For a game with n types of node there exists a permutation,

(y1, . . . yn) of the integers 1 to n, termed the optimal ordering, such that

policy π is optimal if it searches a node of type yk iff k = min{i : yi > 0}.

Proof: The theorem is trivially true for n=1. For n > 1, an induction

argument applies. Theorem 3.1 proves that any optimal policy, π, for the

game (x,d) is simple-minded. Since π searches nodes of type i∗ iff xi∗ > 0,

let y1 = i∗. The optimal policy has only to be determined when xi∗ = 0. In

this case, Theorem 3.2 proves that for

x′ = (xi . . . xi∗−1, xi∗+1, . . . xn)

d′ = (d′
i . . . d′

i∗−1, d
′
i∗+1, . . . d′

n)

d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗))

V (x,d) = V (x′,d′)

Now let (y2, . . . yn) be the optimal ordering of the game (x′,d′), which

involves only n − 1 different types of node, so optimal play is a consequence

of the induction hypothesis.

The proof considers n different games, since the equivalence proved by

Theorem 3.2 is applied n − 1 times. Each node type is optimal to search in

at least one of these games, so consider a node type in a game for which it

is optimal. The transformed node details of such a node type account for

the chunking of any more rewarding offspring. We therefore define p∗i , the

82

corrected probability that a node of type i contains an object, as the pi value

of this game. We define t∗i , the corrected expected time taken to search a

node of type i, in a similar way. The ratio of these two we term the corrected

reward rate, denoted Ø∗
i . This is a true reflection of the box type’s reward

rate in the sense that 1/Ø∗
i is the expected time to find an object when the

only available boxes are an unlimited supply of boxes of type i.

3.4 The OR-Tree Model in Practice

The model may be used for situations with a problem which requires individ-

ual searches to be carried out in an effort to find a ‘solution’ (an object). The

domain of applicability is narrowed by the satisficing nature of the model.

This imposes the following requirements:

1. A problem may have one, none or many solutions.

2. All the solutions are of equal value.

The model also requires that the performance indicator is the expected

use of some resource (typically time or money) while the problem is being

investigated. For the model to be of use, the search must also be of a kind

which can be broken down into independent units, of which there are finitely

many categories, each of which has its own expected resource requirement, its

own known chance of yielding a solution and of creating other search units.

The original model also allows search to terminate only when a solution is

83

found, or when no further units remain to be searched, although we shall

relax this requirement in Section 3.6.

Note that ‘finding a solution’ does not necessarily imply a favourable out-

come. In the drug-testing example that follows, if a solution is found then the

drug being tested has failed the required tests. Another such example is the

task of scheduling a difficult multi-stage manufacturing process. Each stage

of the manufacturing process is a node type. Its resource cost is straightfor-

ward, while the chance of its finding a solution corresponds to the chance it

goes wrong and permanently destroys the product.

A useful consequence of the generality of the model is that it can be

applied without modification to cases in which some of the tree is known

in advance. This may be achieved by the addition of extra node types. In

the general case there is a one-to-one correspondence between the extra node

types and the nodes in the out-tree which are known. The search time, ti and

probability of containing an object, pi, of a node type are set so as to match

these values of the node in the known out-tree. The internal nodes in the

known tree are represented by node types which have offspring distributions

which reflect the fact that it is known for certain exactly which nodes will

be made available. In the case where the previously known out-tree contains

subtrees which are identical, the number of node types added to the model

may be reduced by assigning the matching nodes in the tree to the same

node type. The problem of searching a set of boxes or a tree which is wholly

pre-determined [23, 52] is thus a special case of this model.

84

3.4.1 Complexity and Ill-conditioning

Selection of the most rewarding node requires O(n) computations and must

be done n times, so this part of the algorithm has complexity O(n2). The time

required to transform the node type details by the equations of Theorem 3.2

depends upon the properties of the descendant distributions, fi. Repeated

slight inaccuracies during calculation of the values of p̂(), t̂() and f̂() may

be compounded and hence lead to greater inaccuracies later on in calcula-

tions, because of the recursive nature of the algorithm. Complexity problems

are therefore likely to arise in determining the optimal policy in cases with

large numbers of node types and complicated descendent distributions. Such

ill-conditioning arises particularly when two or more node types have very

similar reward rates, and so the reward rates of the nodes concerned must

be calculated to a great accuracy to determine which is optimal. However

the practical consequence of such ill-conditioning is that even a sub-optimal

policy can be expected to achieve a payoff which is very close to optimal.

If the model is applied to problems which are to be studied repeatedly

in real time then the fact that it is computationally expensive to deduce the

optimal policy may be of little relevance. The model has the great advantage

that the optimal policy, once deduced, is very easy to store and apply; it need

only be deduced once, and can then be applied swiftly in all states that arise.

This feature makes the model suitable for applications such as computer game

playing in which speed of exercising sequences of optimal control decisions is

at a premium.

85

In practical applications with a large number of node types which exhibit

ill-conditioning, some degree of approximation may well be required. The

tension between the wish to deduce a strictly optimal policy and the need to

limit the complexity of the calculations required is a matter to be determined

by the relative costs involved.

3.4.2 Optimal Search for Conspiracies of Size 1

Although conspiracy numbers may be applied to the usual multi-valued trees,

we now consider their application to trees in which all the nodes are scored

with one of two values. With a certain loss of information, any evaluation of

any game tree may be treated in this way.

Figure 17: 2-Valued Conspiracy Numbers

Two-valued evaluation functions simplify the calculations about and ex-

positions of conspiracy-based techniques, since the only nodes which can

86

conspire are nodes on the principal variation (marked in bold in Figure 17).

Consider an evaluation function which assigns nodes one of two values,

H(x) �→ {−1, 1}. These may be thought of as ‘probable win’ and ‘probable

loss’ nodes. We follow Knuth and Moore’s negamax notation [44]. Hence,

assume that there are two sorts of node, −1 and 1. For the sake of simplicity

of exposition, let us assume that the game tree and evaluation function are

such that:

d is a daughter of p ⇒ P [H(d) = −H(p)] = 1 − δ

P [H(d) = H(p)] = δ

We now show how the tree search model we have developed can be used

to analyse the process of searching for conspiracies of size one, and to deduce

the optimal search order. The first step of the original conspiracy number

search, upon being given a game tree, is to search it for conspiracies of size

one. That is, to search it either until expansion of a single leaf has the effect

of changing the minimax backed up score at the root, or until we can conclude

that there are no more single leaf nodes which can do this.

This problem can be seen to fit into the satisficing out-tree search model

framework without further adjustment. The state of the investigation may

be represented by L, a list of the critical leaves. The search terminates

if investigation of a critical leaf finds a conspiracy, or if the list of critical

leaves becomes empty. The leaf investigated is removed from L, and any

descendants which are critical are placed on L. We assume, for simplicity,

that both nodes take one time unit to expand. Optimal policy is to search the

87

nodes in the order {1,−1}, as deduced from solving the problem involving

the following two node types:

d1 = (1 − (1 − δ)2, 1, s−1
2)

d−1 = (δ2, 1, 2δ(1−δ)
1−δ2 s1 + (1−δ)2

1−δ2)

We have seen in Section 1.2 that several authors have derived algorithms

which evaluate game positions not only with a scalar score but also with

a measure of uncertainty, and that these can yield significant performance

gains. In this, simplified example, we suppose, that as well as assigning

them a score ∈ {−1, 1} the evaluation function separates its estimates into

two classes, types a and b, with different amounts of reliability. There are

therefore four types of nodes: {+1(a), +1(b), -1(a), -1(b)}. A realistic esti-

mate of δ is required for each node type, and could be deduced empirically.

If we assume that a node’s daughters have a probability, ṗ, of having the

same type as their parent, then as shown overleaf in Figure 18 this model

requires the following 4 node types:

d1a = (1 − (1 − a)2, 1, (ṗs−1a + q̇s−1b)
2)

d1b = (1 − (1 − b)2, 1, (ṗs−1b + q̇s−1a)
2)

d−1a = (a2, 1, 2a(1−a)
1−a2 (ṗs1a + q̇s1b) + (1−a)2

1−a2)

d−1b = (b2, 1, 2b(1−b)
1−b2

(ṗs1b + q̇s1a) + (1−b)2

1−b2
)

This problem is in fact the one which inspired the investigation of the

tree search model which forms the main subject of Chapter 3. The tree

search model, as we have seen, is capable of solving models of considerably

88

Figure 18: Possible Node Expansion Results

greater generality; the branching factor may be varied as required, as may

the number of classes of uncertainty, or the rules about how nodes of one

type give rise to nodes of another. Any of these things may be correlated, so

as to reflect observations made about a specific game. It is also possible to

model the partial expansion of nodes – by which we refer to the creation of

less than a full set of node’s daughters.

89

3.4.3 Mathematical Example

For the sake of convenience in the following two examples we shall replace

the offspring distribution, fi, by a multivariate generating function, Gi(s).

Consider the search problem involving the three node types below:

d1 =
(

1

4
, 6,

1

3
+

1

3
s1s2 +

1

3
s3

)

d2 =
(

1

2
, 9,

1

4
+

1

4
s1 +

1

2
s2

)

d3 =
(
0, 1,

2

3
s1s2 +

1

3
s1s

2
2s3

)

The first step is calculate the reward rates:

Ø1 = 1
4
/6 = 1

24

Ø2 = 1
2
/9 = 1

18

Ø3 = 0/1 = 0

Hence, node type 2 is the most rewarding one. In order to deduce the sec-

ond element of the optimal ordering we require (p̂2(1), t̂2(1), Ĝ2(s)(1)) and

(p̂2(3), t̂2(3), Ĝ2(s)(3)), the modified details of the remaining node types. To

do this we first chunk together a single search of the most rewarding node

type with an exhaustive search of its descendants, to deduce p̂2(2), t̂2(2) and

Ĝ2(s)(2), the characteristics that define an exhaustive search of type 2 nodes

carried out upon a single type 2 node.

p̂2(2) =
1

2
+

1

4
p̂2(2)

90

=
2

3

t̂2(2) = 9 +
1

4
t̂2(2)

= 12

Ĝ2(s)(2) =
1

4
+

1

4
s1 +

1

2
Ĝ2(s)(2)

=
1

2
+

1

2
s1

Solution of the above equation for Ĝ2(s) is a straightforward matter in

this case, since a search of the most rewarding node never reveals more than

one more node of this same type. This is the case for several classes of

problem, including the multi-armed bandit model described in Section 3.5.

Numerical methods are required in other cases.

d2 =
(

2

3
, 12,

1

2
+

1

2
s1

)

The next step is to amend d1 and d3 to reflect what we already know

about the optimal ordering, i.e. that if a node of type 2 is revealed then it

91

will be optimal to search it.

p̂2(1) = 1
4

+ 3
4

1
3
p̂2(2) = 5

12

t̂2(1) = 6 + 3
4

1
3
t̂2(2) = 9

Ĝ2(s)(1) = 1
3

+ 1
3
s1Ĝ2(s) + 1

3
s3 = 1

3
+ 1

6
s1 + 1

6
s2

1 + 1
3
s3

p̂2(3) = 0 + 12
3
p̂2(2) + 11

3
(1 − (1 − p̂2)

2)) = 20
27

t̂2(3) = 1 + 11
3
t̂2(2) + 12

3
(t̂2(2) + (1 − p̂2(2))t̂2(2)) = 43

3

Ĝ2(s)(3) = 2
3
s1Ĝ2(s)(2) + 1

3
s1(Ĝ2(s)(2))2s3

= 1
3
s1 + 1

3
s2

1 + 1
12

s1s3 + 1
6
s2

1s3 + 1
12

s3
1s3

The modified node details are therefore

d′
1 =

(
5

12
, 9,

1

3
+

1

6
s1 +

1

6
s2

1 +
1

3
s3

)

d′
3 =

(
20

27
,
43

3
,
1

3
s1 +

1

3
s2

1 +
1

12
s1s3 +

1

6
s2

1s3 +
1

12
s3

1s3

)

We now compute the reward rates as shown below and conclude that

type 3 is the new most rewarding node type since Ø3 > Ø1, so the optimal

ordering is {2, 3, 1}.

Ø1 = 5
12

/9 = 5
108

Ø3 = 20
27

/43
3

= 20
387

3.4.4 Drug Testing Example

As a simplified example of a realistic application, suppose permission is being

sought to market a newly developed drug. Before a license can be given there

92

are various statutory tests which must be carried out. Assume that legislation

requires that a drug be tested for its allergic potential, a, interaction with

other drugs, i, and for effectiveness, e.

The anti-allergenic trial, A, requires that the drug not trigger an aller-

gic reaction in any of four test subjects particularly susceptible to allergic

reactions. The drug interaction trial, I, consists of a test upon three test

subjects, and the drug is deemed to pass if at most one patient shows evi-

dence of a negative interaction. In order to be marketed the drug also must

show evidence of a sufficiently high rate of effectiveness. The drug is deemed

to pass the effectiveness trial, E, if it has a therapeutic effect on at least two

out of four sufferers.

Suppose that the relative costs of testing a single subject in trials A, I

and E are 1:5:4, while previous work developing the drug is such that the

prior belief about the parameters is as follows:

ap ∼ Beta(1, 22) ep ∼ Beta(44, 6) ip ∼ Beta(5, 25)

The problem now is to determine the order in which the trials should be

conducted so as to minimise the expected cost until completion. Define the

following nodes. For the anti-allergenic trial:

da0 = (1
23

, 1, sa1) da1 = (1
24

, 1, sa2)

da2 = (1
25

, 1, sa3) da3 = (1
26

, 1, 1)

For the effectiveness trial:

93

de00 = (0, 4, 6
50

se10 + 44
50

se11) de11 = (0, 4, 6
51

se21 + 45
51

)

de10 = (0, 4, 7
51

se20 + 44
51

se21) de21 = (0, 4, 7
52

se31 + 45
52

)

de20 = (8
52

, 4, se31) de31 = (8
53

, 4, 1)

For the interaction trial:

di00 = (0, 5, 5
30

si10 + 25
30

si11) di10 = (6
31

, 5, si21)

di11 = (0, 5, 5
31

si21 + 26
31

) di21 = (6
32

, 5, 1)

The process of deducing the most rewarding node type and updating the

details of other nodes types accordingly is repeated just as before, to deduce

the optimal ordering: {A0, A1, A2, I10, A3, E20, E31, I21, I00, E10, I11, E00,

E11}. The optimal ordering is sufficient to calculate optimal policy. The

problem starts with three nodes available for search, one each of types A0,

E00 and I00, of which A0 has the highest priority, so should be searched first.

Then, assuming no allergic reaction is observed, there will be a node of type

A1, and so that will be have the highest priority of the available nodes, and

so on. The optimal policy is therefore to carry out the anti-allergenic trial

first. Similarly, since all of the I.. node types have a higher priority than the

node type E00, it will optimal next to carry out the interaction trial to its

conclusion, and then, if necessary, the effectiveness trial.

Further detail can be added as required. If for example, trial I has a set

up cost of α which must be paid before any experimentation can take place

it suffices to add one more node type:

di = (0, α, si00)

94

Now suppose, in addition, that the number of separate drug interaction

trials required is itself variable and can only be determined by a preliminary

investigation at a cost of β. The number of interaction trials required may be

modelled by a general discrete distribution, but for the purposes of illustra-

tion, let us suppose that it was a geometric(k) distribution; the extra node

type added would be:

dpi =

(
0, β, (1 − k)

∞∑
n=0

(ksi00)
n

)

3.4.5 Computer Software Example

We now present an example of an application that motivates the model ex-

tension described in Section 3.6. Suppose that a software developer contracts

another firm to check the reliability of a piece of a new product before it is

released. For this process, the software involved is broken down into a set of

individual modules of code, each of which is supplied with its own specifica-

tion that describes the intended functionality.

The consultancy firm is paid a certain amount for each module of code

investigated. Modules in which a deviation from the accompanying specifi-

cation is detected are returned to the original company together with details

of the bug. Modules in which no fault is detected are guaranteed ‘OK’ by

the consultancy. The nature of the agreement is such that the consultancy

is obliged to pay a certain levy for every module which is guaranteed ‘OK’

but later discovered to contain a bug.

Modern methods of software design mean that each module of code may

95

be well modelled as a separate problem. The ‘object’ that is searched for is

a fault in the code. The node types are submodules of code. Upon investiga-

tion, each submodule of code may be shown to be functioning incorrectly (ob-

ject detected), to be functioning correctly (no object detected, no offspring

generated), or to have a functionality that depends upon the conjunction

of the functionality of one or more other submodules (no object detected,

offspring generated).

Early retirement is an essential feature for application of the model to this

problem, since in the marketplace it is simply too time consuming to test a

program to the point where one can have 100% confidence that no bugs

exist. With the extra assumption that once the software is released onto

the marketplace, any module containing a bug will eventually be detected

as such, this means that the expected cost of ceasing investigations into a

particular module and declaring it ‘OK’ is proportional to the probability

that it contains a bug, which is the form of the early retirement function

specified in Subsection 3.6.1.

3.5 Bandits

We now review a class of standard models referred to as bandit problems. A

one armed-bandit is in one of a finite number of states. When activated it re-

turns a random payoff the expectation of which is dependent upon that state.

Each activation also entails a random transition to another state, according

to known probability distribution. A multi-armed bandit is a problem com-

96

posed of a set of one-armed bandits, in which the operator of the bandits can

choose which project to activate, and is aiming to do so in a manner that

maximises his expected reward.

If there is no discounting, the multi-armed bandit problem is a discrete

Markov problem. With discounting, the length of time taken for each acti-

vation becomes important. If this is allowed to vary randomly, the problem

becomes semi-Markov – as well as the states of the projects, the time at which

the last transition occurred is also relevant. In this model future rewards are

continuously discounted by α.

3.5.1 Gittins Indices

In 1979, Gittins[25] proved that it is optimal to allocate each ‘arm’ of the

bandit a separate index 15 depending only upon the state of that project, and

then the projects with the greatest available indices. Gittins’ proof proceeds

by comparing projects with a ‘standard project’ which yields a constant

stream of rewards.

Whittle[89] produced a more natural proof of the optimality of Gittins

indices, and provided an interpretation of them by introducing the idea of a

‘retire’ option. Retirement from a bandit process results in receipt of a single

amount referred to as a terminal reward.

15Gittins termed them dynamic allocation indices, but at the suggestion of Whittle[89],

Gittins index has become standard

97

3.5.2 Branching

Whittle[89] developed his proof of the optimality of Gittins indices to ad-

dress a problem considered by Nash[53], in which the number of projects is

not constant. He assumed, for convenience, that projects fall into one of

finitely many classes, each of which has finitely many states. He proved the

optimality of the Gittins index policy for the case in which new projects ar-

rive at a known random rate. He referred to this model as the ‘arm-acquiring

bandit’.

The ‘branching bandits’ model of Weiss[88] is a very powerful generali-

sation of the semi-Markov multi-armed bandit model. It allows the number

of new projects that arrive, termed ‘descendants’ by Weiss, to depend in a

general fashion upon the project activated, and so the arm-acquiring model,

in which it is not, becomes a simple special case. Weiss proves the optimality

of a Gittins index policy.

A welcome development in the theory of semi-Markov multi-armed ban-

dits was a very simple proof of the optimality of index policies by Tsitsiklis[85].

This owes quite a lot to Weiss’ paper and is generalisable to the branching

bandit case. Its key feature, however, an induction on the cardinality of the

bandit’s statespace, makes it considerably simpler. Its structure is identical

to the independently discovered proof of the optimal policy for the OR-tree

model given in Subsection 3.3.3.

The important paper of Bertsimas and Niño-Mora[17] establishes a frame-

work with which to analyse a wide range of stochastic and dynamic schedul-

98

ing problems in a radically different fashion. Their approach is not based

around dynamic programming, but they characterise the optimal policy by

using a linear program. This approach yields closed formulae for the max-

imum reward of a multi-armed bandit. Glazebrook and Garbe[28] use this

to develop simpler dynamic programming proofs of the optimality of Git-

tins index policies for finite state branching bandits, as well as suboptimality

bounds.

3.5.3 Search Problem Applications

In his comment on Gittins[25], Kelly[42] points out how multi-armed bandits

can be used to solve the ‘boxes’ search problem, as described in Section 3.1,

with overlook probabilities. He does this by considering a family of alterna-

tive bandit processes, with no transition costs, that give a reward of αt it the

object is found at time t. The issue of stopping is conveniently dealt with by

assuming that the searcher does not know whether the object has been found.

Kelly also explains how another classic problem, the ‘gold-mining’, or ‘bomb-

ing’, problem first formulated by Bellman[11] can be solved by applying the

multi-armed bandit framework.

As the solution to both of these problems was already known, he re-

marks, the real advantage of formulating them as bandit problems is that

this illustrates how slightly more general problems may also be fitted into

the framework. As an example, he supposes the problem in which the proba-

bilities of some of the boxes were not known exactly; the learning that results

99

from unsuccessful search can easily be fitted into the bandit framework.

The paper by Kadane and Simon[37] of two years earlier established the

optimal policy for the boxes and slices case, and contains a flawed proof of

the case in which search of boxes is constrained by a general partial ordering.

This case, both with and without discounting, was proved independently by

Gittins and Glazebrook[29].

Glazebrook[27] had earlier proved the case in which the precedence con-

straints formed an out-tree. As pointed out by Gittins[26], it is a simple

matter to solve this problem by constructing a branching bandit process.

3.5.4 Link with OR-Tree Model

The ‘boxes’ search model of Section 3.1 specifies parameters pi as the proba-

bility that a box contains an object, and ti as the time taken to search it. We

now show how it can be understood by using the framework for semi-Markov

bandits. As suggested by Kelly in his comment on Gittins[25], each box has

an equivalent bandit.

The cost structure, however, is different. The bandits have two states -

‘searched’ and ‘unsearched’. The retirement penalty and costs of searching

an already searched bandit should be sufficiently large that it is optimal to

search all the unsearched bandits, in some order, and then retire at once.

The expected cost of searching a box, ti, is minus the expected running

reward, Ri, of the activating the corresponding bandit in the ‘unsearched’

state, suitably adjusted to account for its being paid at time Ti, assuming

100

continuous discounting at rate α ∈ (0, 1]:

Ri = −eαTiti

The discounting of the bandits is associated with the possibility of finding

the object in the boxes search. To this end, the bandits have the following

activation times:

Ti = − ln(1 − pi)

α

The boxes problem minimises
∑

ti, whilst the associated semi-Markov

bandit problem maximises
∑

Ri.

Construction of an equivalent semi-Markov bandit problem for the lin-

ear precedence constraints model of Section 3.1 is straightforward, once the

reward rate for semi-Markov bandits has been calculated. From the above

formulae:

Øi =
pi

ti
=

1 − e−αTi

−Rie−αTi
=

1 − eαTi

Ri

We observe that this is the reciprocal of the conventional form of the

Gittins index.

The stochastic search case is equivalent to the semi-Markov branching

bandit model, as described by Weiss[88]. The distribution of descendants,

gi(s, z1 . . . zN) is the the offspring distribution fi described in Section 3.2.

Tsitsiklis[85] writes in his proof of the Gittins index theorem for semi-

Markov bandits:

The proof given here is very simple and it is quite surprising that

it was not known earlier. Perhaps a reason is that for the proof

101

to go through, we have to consider semi-Markov bandits rather

than the usual discrete-time Markov bandits.

It is correct that the method of proof does not work on the standard

discrete-time Markov bandit model. However, as made clear by the above

there is an equivalence between the semi-Markov bandit model and the

Markov tree search model. This clarifies the position of the independently

discovered proof given in Subsection 3.3.3. The tree search model has the

‘probability of discovering an object’ which is equivalent to a nodetype-

specific discount factor. This enables the crucial induction step of the proof

by providing a means to carry out the chunking of node types.

3.6 Retiring Early

Retirement was introduced to the theory of multi-armed bandits by Whittle[89].

This is the option of permanently rejecting all the bandits, and earning in-

stead a single payoff, termed a retirement reward, M ∈ R. To see how this

can be conveniently brought within the existing multi-armed bandit frame-

work, consider a bandit with a single state which yields reward M/(1 − α)

when activated. Activiating this bandit does not change the state. Therefore

once it becomes optimal to do this it will remain so, resulting in a stream of

payoffs M/(1 − α), αM/(1 − α) . . ., equivalent to a one-off payment of M .

Seen in this way, the addition of a retirement option looks more like an

interesting feature of the multi-armed bandit framework than a real extension

102

to it. Indeed, the fact that it was introduced by Whittle principally to

facilitate a shorter proof of Gittins Index Theorem would certainly support

this view, and may explain why ‘retirement’ has not been developed much

further. The inadequacy of this model of retirement is exemplified by the

software development scenario presented in Subsection 3.4.5 above, in which

the expected payoff from retiring should be allowed to depend upon the states

of the projects. We now address this problem.

Let us add an action, retirement, which may be taken at any stage, with

the effect of immediately terminating the search, incurring a penalty cost

M(P), a function of the probability that there is at least one object some-

where. Whittle’s retirement option is equivalent to using a retirement func-

tion M(P) = MIP∈(0,1).

The previous model allowed termination only upon discovery of an object

or when all search opportunities had been exhausted, and so suggests use of

the following penalty function:

M(P) =




∞ : P ∈ (0, 1)

0 : P ∈ {0, 1}
This new model is identical to the original one, because of the regularity

conditions imposed concerning the probability, p′′i , that there is an object

amongst the offspring of a type i node. The two models are not equivalent

if there is an i for which p′′i = 1, since an occurrence of such a node would

allow an early retirement in the second model which would be prohibited in

103

the original model (because discovery of such a node shows that an object

exists somewhere without actually locating it). Similarly, if there is a node

type with qiq
′′
i = 1, then the two models again diverge.

We now consider some important retirement functions, in rough order of

tractability. Only for the first of these is the optimal policy proved in the

general case.

3.6.1 Retire and Say “No”

Theorem 3.4 The optimal policy for penalty functions of the form

M(P) = IP<1(a + bP), with a ∈ [0,∞], b ∈ (−a,∞) is to search nodes in

decreasing order of Ø∗, until either an object has been found or all the re-

maining node types have Ø∗ < (a + b)−1, at which point it is optimal to

retire.

Proof: We first show that it cannot be optimal to retire if there is a node

type i available which has Ø∗
i > (a + b)−1. Then we show by an interchange

argument that, in this situation, it is optimal to search these nodes in order

of Ø∗. Finally, we use a one step lookahead argument to show that if there

is no node type i available with Ø∗
i > (a + b)−1 then it is optimal to retire.

The case of a = ∞ has already been proved, so we assume a < ∞.

M(P) is bounded below by 0. Since this bound is achieved for P = 1, it

must always be optimal to retire if an object has been found.

When a node of type i is expanded, suppose that with probability qi no

object is found, and that the probability that no object exists amongst nodes

104

revealed by the search is q′′i . We shall let q′i be the probability that there is

no object amongst the other nodes or their descendants. Hence:

P = 1 − qiq
′
iE[q′′i]

Denote by Vπ0 the expected value of immediate retirement, and by Vπi0
the

expected value of searching a node of type i and then retiring. Let us now

consider the relative merits of these two courses of action.

Vπ0 = a + bP

= a + b(1 − qiq
′
iE[q′′i])

Vπi0
= ti + qiE[M(1 − q′iq

′′
i)]

= ti + qiM(E[1 − q′iq
′′
i]) as q′

iq
′′
i > 0 and M() is linear in [0, 1)

= ti + qi(a + b(1 − q′iE[q′′i]))

Vπi0
− Vπ0 = ti + qi(a + b(1 − q′iE[q′′i])) − (a + b(1 − qiq

′
iE[q′′i]))

= ti + (a + b)(qi − 1)

= ti − (a + b)pi (10)

Retirement is therefore not optimal if there are any nodes of type i available,

where (a + b)pi > ti, that is, if Øi > (a + b)−1.

We now extend the scope of the above line of reasoning to deal not only

with boxes, but also with chunks of search. A consequence of their definition

is that the reward rate, Ø, of a partially searched chunk is strictly less than

that of the remaining unsearched part. This implies that, as we argued in

Subsection 3.1.1 that it is not optimal to intercalate any other search in the

105

middle of searching a chunk. It is not optimal to retire in the midst of a

chunk, since at least one of the following is always true:

1. The searched portion had Ø > (a + b)−1.

2. The unsearched portion has Ø > (a + b)−1.

In the former case, equation (10) implies that it would have been better

to retire before starting search of the chunk, whilst in the latter, it implies

that it would be better to complete search of the chunk before retiring.

Up to now, we have seen that search should proceed in chunks, and should

not stop as long as there are no nodes available with Ø∗ ≥ (a+b)−1. Equation

(10) implies that, once this point has been reached, immediate retirement is a

better policy than carrying out one (or by induction, many) further searches

and then retiring. This establishes the set of nodes which it is worth searching

before retiring as those with Ø∗ > (a+ b)−1. The optimal policy must search

those in the order which minimises the expected time taken to discover an

object. This is exactly the problem of Section 3.3, which was shown in

Theorem 3.3 to be solved by searching the chunks in decreasing order of Ø∗.

3.6.2 Retire and Guess

Now suppose that upon retirement a guess is taken as to whether or not an

object exists, and a constant cost of K is incurred for an incorrect guess.

106

This corresponds to a retirement function of M(P) = K(1
2
− |P − 1

2
|), where

P is the overall probability that an object exists.

Lemma 3.5 If P ≥ 1
2
, it is not optimal to search a box or sequence of boxes

and then retire unless at this point P < 1
2
, or an object has been found.

Proof: We show that the lemma holds for a single box, from which the

result for a sequence follows immediately by induction. Let policy πi be the

policy of searching box i and then retiring.

Vπi0
= ti + qiM(1 − q′i)

Vπ0 = M(1 − qiq
′
i) = Kqiq

′
i

Vπi0
− Vπ0 = ti + qiM(1 − q′i) − Kqiq

′
i

If the policy retires such that 1 − q′i ≥ 1
2
:

Vπi0
− Vπ0 = ti + qiKq′i − qiKq′i = ti > 0

Theorem 3.6 If all the nodes available for search are boxes, the optimal

policy with retirement penalty function M(P) = K(1
2
− |P − 1

2
|) is either to

retire immediately or to search the boxes in decreasing order of Ø until an

object is found or until no boxes remain with Ø > K−1.

Proof:

P ∈ [0, 1
2
] ∪ {1}:

We observe that no sequence of searches can cause P to assume a value

in the interval (1
2
, 1), successful search fixes P as 1 and unsuccessful search

107

decreases it. Over this domain M(P) = K(1
2
− |P − 1

2
|) assumes identical

values to the function M(P) = IP<1KP , so Theorem 3.4 proves the result.

P ∈ (1
2
, 1):

Lemma 3.5 establishes that an optimal policy which searches at all must con-

tinue to do so until P ∈ [0, 1
2
]∪{1}. Such an optimal policy, therefore, cannot

leave unsearched any boxes with Ø > K−1, from application of Theorem 3.4,

always assuming no object is found. This establishes that an optimal policy

must be prepared to search all the boxes with Ø > K−1. The standard inter-

change argument proves that unless it does so in decreasing order of Ø it can

be improved upon by a policy which plays a suitably permutated strategy.

To see that it is optimal not to include in the search any boxes with

Ø ≤ K−1, we consider the payoff of such a policy, πA.

VπA
=

m∑
i=1

ti
i−1∏
j=1

qj +
m∏

i=1

qiM


1 −

n∏
j=m+1

qj




=
m∑

i=1

ti
i−1∏
j=1

qj +
m∏

i=1

qiK


1 −

n∏
j=m+1

qj




=
m∑

i=1

ti
i−1∏
j=1

qj + K
m∏

i=1

qi − K
n∏

i=1

qi

108

Now consider the payoff of a policy, πA′ , which omits search of box m:

VπA′ =
m−1∑
i=1

ti
i−1∏
j=1

qj +
m−1∏
i=1

qiM


1 −

n∏
j=m

qj




≤
m−1∑
i=1

ti
i−1∏
j=1

qj +
m−1∏
i=1

qiK


1 −

n∏
j=m

qj




≤
m∑

i=1

ti
i−1∏
j=1

qj + K
m−1∏
i=1

qi − K
n∏

i=1

qi

Hence:

VπA
− VπA′ = tm

m−1∏
j=1

qj − pmK
m−1∏
i=1

qi

=
m−1∏
j=1

qj(tm − pmK)

≥ 0 if Øm ≤ K−1

Since policy πA considers m boxes in decreasing order of Øi, this estab-

lishes that it is optimal not to consider any which have Øi ≤ K−1.

We assume for convenience that the boxes are indexed in decreasing order

of Ø, so i < j implies that Øi ≥ Øj . Theorem 3.6 implies that the following

policy is optimal either for j = 0 or for the largest j such that Øj ≥ K−1.

Policy πj searches boxes 1 . . . j ≤ n until it finds
an object. If no object is found, it then retires.

Corollary 3.7 If P > 1
2
, policy πj may be optimal iff

n∏
i=1

qi > 1−
n∏

i=j+1

qi. In

this case, the critical value of K, for which immediate retirement gives the

109

same payoff as a policy πj above, is given by the below:

K−1 =

n∏
i=j+1

qi +
n∏

i=1

qi − 1

j∑
i=1

ti
i−1∏
k=1

qk

Proof:

Vπj
− Vπ0 =

j∑
i=1

ti
i−1∏
k=1

qk + M


1 −

n∏
i=j+1

qi


− M

(
1 −

n∏
i=1

qi

)

=
j∑

i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi


− K

(
n∏

i=1

qi

)

=
j∑

i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi −
n∏

i=1

qi




> 0 if


1 −

n∏
i=1

qi ≥
n∏

i=j+1

qi




We have shown that if


1 −

n∏
i=1

qi ≥
n∏

i=j+1

qi


 then it is always optimal to

retire. In the remaining cases, the critical value of K is calculated as follows:

j∑
i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi −
n∏

i=1

qi


 = 0

j∑
i=1

ti
i−1∏
k=1

qk = K


 n∏

i=j+1

qi +
n∏

i=1

qi − 1




K−1 =

n∏
i=j+1

qi +
n∏

i=1

qi − 1

j∑
i=1

ti
i−1∏
k=1

qk

110

Linear Precedence Constraints. We now add to the model constraints

about the order in which the boxes may be searched, as illustrated overleaf.

We suppose the boxes are indexed so that for j > 0, box (i, j + 1) cannot be

searched until box (i, j) has been searched.

Figure 19: Linear Precedence Constraints

This structure is that of the model of Subsection 3.1.1, and the problem

can be analysed in the same fashion. That is, we work backwards from

the end of each stack, parsing the tree into sections that must be searched

together.

Consider the last two boxes of the ith stack. If Ø(i,ni−1) < Ø(i,ni) then

these two boxes are part of a single chunk of search. The chunking procedure

used is identical to that in Subsection 3.1.1. The validity of the chunking

process is established by the result below, which will be applied recursively

111

to each stack:

Theorem 3.8 If Ø(i,ni−1) < Ø(i,ni) then any optimal policy which searches

box (i, ni − 1) must search box (i, ni) next, unless an object is found.

Proof:

If Ø(i,ni) < K−1:

Theorem 3.6 implies that no optimal policy would search either box (i, ni)

or box (i, ni − 1) even if there were no constraints. Adding constraints can

never increase the payoff from searches, and so the result is proved because

no optimal policies search (i, ni − 1).

If Ø(i,ni) ≥ K−1:

Let π(i,ni−1) be a policy which searches box (i, ni − 1), then some (possibly

empty) set of boxes, j, then retires, leaving box (i, ni) unsearched. Denoting

by q′ij the probability of there being no object amongst the boxes other than

those in stack i or set j, the payoff of policy π(i,ni−1) can be expressed as

follows:

Vπ(i,ni−1)
= t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

We shall compare the payoff of this this with that of two others, policy π1,

which differs from policy π(i,ni−1) in that it searches box (i, ni) before retiring

and with policy π0, that of immediate retirement. These policies have the

following payoffs:

Vπ0 = M(1 − q(i,ni−1)q(i,ni)qjq
′
ij)

Vπ1 = t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjt(i,ni) + q(i,ni−1)qjq(i,ni)M(1 − q′ij)

112

If q(i,ni)q
′
ij ≥ 1

2
, policy π1 is an improvement:

Vπ(i,ni−1)
− Vπ1 = q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

−q(i,ni−1)qjt(i,ni) − q(i,ni−1)qjq(i,ni)M(1 − q′ij)

= q(i,ni−1)qj(K(1 − q(i,ni)q
′
ij) − t(i,ni) − q(i,ni)K(1 − q′ij))

= q(i,ni−1)qj(Kp(i,ni) − t(i,ni))

= q(i,ni−1)qjKt(i,ni)(Ø(i,ni) − K−1) > 0

If q(i,ni)q
′
ij < 1

2
, policy π0 is an improvement:

Vπ(i,ni−1)
− Vπ0 = t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

−M(1 − q(i,ni−1)q(i,ni)qjq
′
ij)

= t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjK(q(i,ni)q
′
ij) − K(q(i,ni−1)q(i,ni)qjq

′
ij)

= t(i,ni−1) + q(i,ni−1)tj > 0

We now consider the remaining case, that in which a policy π searches box

(i, ni−1) and then intercalates search of a non-empty set of boxes, j, before

searching (i, ni). Since either Ø(i,ni) > Øj or Øj > Ø(i,ni−1), policy π can

be improved by a simple interchange argument, as the constraint structure

does not debar swapping j with either (i, ni−1) or, once (i, ni−1) has been

searched, with box (i, ni).

The case of linear precedence constraints can therefore be solved by ap-

plying the same chunking process that was used on the model without re-

tirement. This reduces it, as before, to the unconstrained boxes case treated

above.

We now consider what can be deduced about the general OR-tree model

with early retirement function M(P) = K(1
2
− |P − 1

2
|). From the form of

113

this function, we see that as K → 0, the cost of early retirement becomes

vanishingly small, and so, for small enough K, the optimal policy is to retire

immediately. As K → ∞, early retirement becomes increasingly expensive,

so the optimal policy tends to that of the model without the retirement

option. Note, however, that the models are only asymptotically equivalent,

since for any fixed K, M(P) → 0 as extra nodes are added, and so retirement

is still optimal from states with small enough P .

By comparing Vπ0 with Vπi0
we can prove the following necessary (though

not sufficient) condition for states in which it is optimal to retire. We denote

by q′i the probability that no object exists outside box i or its offspring.

Theorem 3.9 For it to be optimal to retire there must not be a node of type i

available with q′i ≥ 1
2
, Øi > K−1 + Iq′iqi≤ 1

2

1−2q′iqi

ti
.

114

Proof: If node i is a box:

Vπ0 = M(1 − q′iqi)

Vπi0
= ti + qiM(1 − q′i)

Vπi0
− Vπ0 = ti + qiM(1 − q′i) − M(1 − q′iqi)

= ti + qiK(1
2
− |1

2
− q′i|) − K(1

2
− |1

2
− q′iqi|)

For q′iqi ≥ 1
2

: = ti + qiK(1 − q′i) − K(1 − q′iqi)

= ti + K(qi − q′iqi − 1 + q′iqi)

= ti + K(qi − 1)

= ti − Kpi

< 0 iff Øi > K−1

For q′i ≥ 1
2
≥ q′iqi : = ti + qiK(1 − q′i) − K(q′iqi)

= ti + K(qi − q′iqi − q′iqi)

= ti + qiK(1 − 2q′i)

< 0 iff qiK(2q′i − 1) > ti

⇔ 2q′iqi−qi

ti
> K−1

⇔ 2q′iqiti−1

ti
+ pi

ti
> K−1

⇔ Øi > K−1 +
1−2q′iqi

ti

For 1
2

> q′i : = ti + qiK(q′i) − K(q′iqi) = ti

> 0

Thus:

115

Vπi0
− Vπ0




< 0 | q′iqi ≥ 1
2
, Øi > K−1

< 0 | q′i ≥ 1
2
≥ q′iqi, Øi > K−1 +

1−2q′iqi

ti

≥ 0 | otherwise

(11)

Adding more descendants to a node can only ever increase the desirability

of searching it, and so, since we assumed the node type i had no descendants,

the result is also valid for any nodes of type i with probability pi of containing

an object.

Useless node types. We define a node type as being useless, if there is

an optimal policy which will never search it, no matter which other boxes

are available for search.

Corollary 3.10 A box of type i with Øi ≤ K−1 is useless.

Proof: Let πiA be an arbitrary policy which starts by searching a box of a

type i, with Øi ≤ K−1. By A we denote the sequence of searches it carries

out before retiring if the initial search is unsuccessful. Inequality (11) of

Theorem 3.9 above implies that if A is empty, then policy πiA is no better

than a policy of immediate retirement, which we shall denote π0.

We now address the case of non-empty A. Suppose the expected time

to carry out search A is tA, and that an object is revealed with expected

probability pA. We denote by p′′A the expected probability that an object

116

exists amongst the nodes revealed by searching A, and by p′Ai the probability

that an object exists amongst the nodes unsearched by policy πAi.

For ØA ≥ K−1:

VπiA
= ti + qi(tA + qAM(1 − q′Aiq

′′
A))

VπAi
= tA + qA(ti + qiM(1 − q′Aiq

′′
A))

So : VπiA
− VπAi

= ti + qi(tA + qAM(1 − q′Aiq
′′
A))

−tA − qA(ti + qiM(1 − q′Aiq
′′
A))

= pAti − pitA

= tAti(ØA − Øi) ≥ 0

In this case therefore, policy πAi is at least as good as policy πiA.

For ØA < K−1:

VπiA
= ti + qi(tA + qAM(1 − q′Aiq

′′
A))

Vπ0 = M(1 − qiqAq′Aiq
′′
A)

So : VπiA
− Vπ0 = ti + qi(tA + qAM(1 − q′Aiq

′′
A)) − M(1 − qiqAq′Aiq

′′
A)

For qiqAq′Aiq
′′
A ≥ 1

2
:

= ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(1 − qiqAq′Aiq

′′
A) (12)

= ti + qitA + K(qiqA − qiqAq′Aiq
′′
A − 1 + qiqAq′Aiq

′′
A)

= ti + qitA + K(qiqA − 1)

Since ØA < K−1 and Øi ≤ K−1, KpA < tA and Kpi ≤ ti. Thus:

> Kpi + qiKpA + K(qiqA − 1)

> K(pi + qipA + qiqA − 1)

117

> 0

For q′′Aq′Ai ≥ 1
2
≥ qiqAq′′Aq′Ai :

= ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(qiqAq′Aiq

′′
A)

≥ ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(1 − qiqAq′Aiq

′′
A)

> 0 from (12)

For 1
2
≥ q′′Aq′Ai :

= ti + qi(tA + qAK(q′Aiq
′′
A)) − K(qiqAq′Aiq

′′
A)

= ti + qitA

> 0 (13)

In this case therefore, π0 is better than πiA.

We have now proved that for any policy πiA, which starts by searching a

box of type i, with Øi ≤ K−1, there exists an alternative policy which does

not, and which achieves a payoff at least as good. The theorem therefore

follows by recursive application of this result.

Identification of useless node types allows a compression of the description

of the state, since the number of such nodes available is relevant only in so

far as it influences P , the probability that an object exists somewhere. Thus,

if node types Xj+1 . . .Xn are useless, they can be ‘hidden’ in our description

of the state, and the vector (X1, . . .Xn) replaced by the vector (X1, . . .Xj, h)

where h represents the ‘hidden probability’, that is, the probability that

an object exists somewhere amongst the nodes of type j + 1 . . . n or their

118

descendants. The h value has the effect of changing the effective cost of

retirement:

Figure 20: Effective M() for Different Hidden Probabilities

Since the effective M(P) is linear for h ≥ 1
2
, the optimal policy from such

a state is to retire immediately.

One-step Lookahead Policies. We now consider the class of one-step

lookahead policies for this retirement function. A one-step lookahead policy

is optimal for the boxes case without retirement, as shown at the start of this

chapter. This may be understood to be a consequence of the simplicity of the

motives for searching a box. In the case of linear precedence constraints, this

simplicity is upset. However, we have seen that if the nodes are grouped into

maximal indivisible blocks, and search of a maximal indivisible block is taken

to be a single step then the optimal policy is a one-step lookahead policy. The

OR-tree search problem may be treated in a similar fashion, with stochastic

chunks of search taking the place of the deterministic maximal indivisible

blocks. One is therefore prompted to wonder whether the OR-tree search

problem with retirement function M(P)−K(1
2
− |1

2
−P |) can also be solved

119

by a similar process of chunking together a node with some subset of its

descendants.

Suppose that there are three node types, as defined below, with ε small

but positive.

A = (0, ε, 10
11

sB + 1
11

sC)

B = (1
100

, K, 1)

C = (1
10

, K, 1)

Consider a state in which there are seven nodes of type A available.

Observe that p′′A = 54
55

, so the overall probability that an object exists is

P (x) = 1 − (54
55

)7 < 1
2
. We note that if each of the type A nodes is searched

and gives rise to a type C node, then the probability that an object exists

will rise to 1−(9
10

)7 > 1
2
. Hence, M() is concave but not linear over the range

of possible values taken by P if all the type A nodes are searched. Thus, the

expected payoff from retirement decreases if these searches are carried out,

and it will be optimal to do some searching if ε is small enough.

We observe that expansion of a single type A node can only cause P to

adopt a value of either 1− 9
10

(54
55

)6 or 1− 99
100

(54
55

)6. Since M(P) is linear over

this range, a one-step lookahead policy would retire rather than carry out

any search, and so fail to play optimally.

120

Hence, if the optimal policy is to be a one-step lookahead policy, the step

size must be such as to consider expansion of all the type A nodes in one go.

This would require a ‘horizontal’ equivalent of the chunking concept, that is,

one which treats sets of siblings as a single chunk16. The interaction between

these, new, chunks, and the ‘vertical’ chunking process which defines maximal

indivisible blocks does not seem to be tractable. A fuller understanding of

the problems with one-step lookahead policies may lead to the development

of a more theoretical approach to the choice of step size than that presented

in Section 6.3.

3.6.3 Retire and Say “Yes”

Now suppose that upon retirement, a cost of K is incurred if no object exists.

This corresponds to a retirement function of M(P) = IP>0K(1 − P).

Theorem 3.11 In the boxes case, if K ≤ ∑n
i=1

∏i−1
j=1 qjti /(1 −∏n

i=1 qi) then

it is optimal to retire immediately. If K ≥ ∑n
i=1

∏i−1
j=1 qjti /(1 −∏n

i=1 qi) then

it is optimal to search all the boxes for an object in decreasing order of Øi.

Proof: Suppose that a non-empty sequence of searches, A, is carried out,

which has probability pA of revealing an object, and takes expected time tA.

Denoting by q′A the probability that an object exists in the remaining boxes,

we compare the payoff of a policy, π0, of immediate retirement, with policy

16There is an analogy here with the ‘conspiracy’ concept mentioned in Subsection 1.2.2.

121

πA0, which carries out search of A, and then retires:

VπA0
= tA + qAM(q′A)

=




tA + qAKq′A | q′A < 1

tA | q′A = 1

> KqAq′A = Vπ0 | q′A < 1

If q′A < 1 it is therefore better to retire immediately than to carry out such a

sequence of searches, A, and then retire. Since we exclude boxes with pi = 0,

there is only sequence of searches with q′A = 1. This is made up of all the

boxes. The two possible optimal policies are therefore searching all available

boxes or retiring immediately. The interchange argument can be used as

usual to show that the optimal order in which to carry out search is in order

of decreasing Ø. The payoff from searching all the boxes in this order is

∑n
i=1

∏i−1
j−0 qjti, while the cost of immediate retirement is K

(
1 −∏n

i−1 qi

)
.

The following conjecture, if proved, would give some insight onto the

shape of the stopping region for the boxes case.

Conjecture 3.1 If it is optimal in the boxes case to retire from state xA and

from state xB, then will also be optimal to retire from the state below:

(
⌈

x1
A+x1

B

2

⌉
, (
⌈

x2
A+x2

B

2

⌉
. . .
⌈

xn
A+xn

B

2

⌉
).

We present a simple example to show that Conjecture 3.1 is not true in

the general case. Consider the following four node types:-

A =
(
0, 10, 1

2
sC + 1

2
sD

)
B = (ε, 46, 0)

C = (ε, 16, 0) D =
(

1
2
, K ′, 0

)

122

Let ε be positive but negligibly small. We now calculate the optimal

course of action from states (A1 ∪ A2), (B1 ∪ B2) and (A ∪ B), assuming

that K ′ > K, so that, if a node of type D is found, the optimal action will

be to retire. For some value of K, we will be indifferent between immediate

retirement from (A1 ∪ A2) and searching in an effort to show that no object

exists.

V (A1 ∪ A2) = 10 +
1

2
K +

1

2

(
10 +

1

2
K +

1

2
(16 + 16)

)
= 23 +

3

4
K

So, the indifference value of K from state (A1 ∪A2) is 92 since this is the

solution to 23 + 3
4
K = K. From (B1 ∪B2), the cost to search and show that

there is no object is 92, so this is also the indifference value of K from that

state.

V (A ∪ B) = 10 +
1

2
K +

1

2
(46 + 16) = 41 +

1

2
K

Solving this equation to get the indifference value of K for (A∪B), we get

82, a lower value than that for either (A1 ∪A2) or (B1 ∪B2), and so conclude

that the retirement region in this case is not convex. The lower indifference

value can be understood to stem from an interaction of the A and B nodes;

for K < 92, the expression (A1 ∪ A2) is too unlikely to be worth searching,

while the expression (B1 ∪ B2) cannot be searched in a way that yields any

information.

123

3.6.4 Other Retirement Functions

We have considered above three of the most natural choices for the retire-

ment function. The ‘Retire and Guess’ function of Subsection 3.6.2 could

be modified without major difficulty to allow for different penalties of type I

and type II errors. For many practical applications, M() might not have one

of the forms described above. If the node types did not have any simplify-

ing properties, this would probably require some approximation or solution

via dynamic programming since complete mathematical treatment of more

complicated retirement functions seems likely to be a difficult exercise.

To underline the complexity of the optimal policy for other retirement

functions, we present an example with two node types:

dA =
(

1

10
, 1, 1

)
dB =

(
1

10
, 1,

1

9
+

8

9
sA

)

Table 2 overleaf shows the optimal policy from various states for the

retirement function M(P) = 90IP>0.06.

124

111111111122222222223333333333444444
0123456789012345678901234567890123456789012345

0:aaaaaaaaaaaaaaaaaaa
1:=b==================
2:=bbb=================
3:aaaaaaaaaaaaaaaaaaaaa
4:=b====================
5:=bbb===================
6:=bbbbb==================
7:=bbbbbbb=================
8:=bbbbbbbbb================
9:=bbbbbbbbbbb===============

10:=bbbbbbbbbbbbb==============
11:=bbbbbbbbbbbbbbb=============
12:aaaaaaaaabbbbbbbb============
13: ...=b========bbbbbbbbb===========
14: .=bbb=======bbbbbbbbbb==========
15: bbbbb======bbbbbbbbbb==========
16: bbbbb=====bbbbbbbbbb==========
17: bbbbb====bbbbbbbbbbb=========
18: bbbbb===bbbbbbbbbbb=========
19: bbbbb==bbbbbbbbbbbb========
20: bbbbb=bbbbbbbbbbbb========
21: bbbbbbbbbbbbbbbbb========
22: bbbbbbbbbbbbbbbbb=======

. : Optimal to retire. a : Optimal to search a type A node.
b : Optimal to search a type B node. = : Optimal to search either node.

Table 2: Optimal Policy for an Alternative Retirement Function

The number of A nodes is along the x axis, the number of B nodes is along

the y axis. The optimal policy was calculated by dynamic programming. The

program is included in Appendix C.

125

3.7 Overlook Probabilities

We now modify the model to allow the inclusion of overlook probabilities, as

the original satisficing search model in the boxes case of Section 3.1 has been

modified by Hall [31], Stone [82] and Wegener [87]. We now assume that

when a node of type i contains an object and is searched there is a chance

that the object will not be detected. This causes a subtle yet important

change to the problem; if a node type with a non-zero overlook probability

is available, then however many searches are carried out, it is impossible

to conclude for certain that no object exists, because of the possibility of

repeatedly having overlooked an object.

Let us revise our initial optimality criterion, ‘expected time to termina-

tion’. We first observe that if no object exists, then it does not matter in

which order the boxes are searched. Hence:

Vπ = E[VπIObject exists + VπINo object exists]

= E[VπIObject exists] + vAll nodes

= E[Vπ|Object exists]P (Object exists) + vAll nodes (14)

Since vAll nodes is a constant, equation (14) shows that a policy which

is optimal in the original sense of minimising ‘expected time to termination’

also minimises the ‘expected time to termination given that an object exists’.

There is a positive probability that no object exists, which, with over-

look probabilities, causes search to continue indefinitely. We are therefore

required to modify the initial definition of optimality if we wish to use it to

126

discriminate between policies, and so we restrict our attention to cases in

which the choice of policy makes a difference – i.e. those cases in which an

object exists. Instead of minimising expected time until termination we shall

be minimising expected termination time given that an object exists. This

modified definition of optimality does not conflict in any way with the one

used up to this point, and indeed supersedes the previous definition which

was introduced on grounds of simplicity.

Extend node type di = (pi, ti) by adding oi ∈ [0, 1) as an extra parameter,

which we shall refer to as the overlook probability. Since there is now no limit

to the number of times it may be worthwhile to search a node of type i, we

add another subscript to signify the number of times each node has been

searched. Define node type (i, j) to be a node of type i which has been

searched j times without success. Thus, to add an overlook probability of oi

to node type i, consider each type i node to be of type (i, 0), and replace the

single node type i by a family of node types i, j defined as follows:

ti,j = ti pi,j =
oj

i (1 − oi)pi

qi + pio
j
i

We modify the offspring distribution to ensure that the first time a node

of type i is searched, a node of type (i, 1) is generated in addition to any

offspring revealed, whilst unsuccessful search of an (i, j) node reveals exactly

one node, of type (i, j + 1). The only theoretical complications of extending

the model in this way arise from the step of the proof in which i∗ is set equal

127

to a node type which maximises Øi. Since there are now an infinite number

of node types, we must show that there is a node type which achieves this

maximum. We shall do this by showing that Øi,j → 0 as j → ∞. This proves

that the maximum is achieved, since it implies that for any ε > 0, there are

only finitely many Øi,j ≥ ε.

Before proving this, we shall increase the generality slightly by allowing

for non-constant overlook probabilities. Let oi,j be the overlook probability

for the jth time a node of type i is searched.

Lemma 3.12 For any node type i, Øi,j → 0 as j → ∞.

Proof: The probability that an object is discovered on the jth search of a

node of type i is pi(1 − oi,j)
∏j−1

k=0 oi,k. Hence:

∞∑
j=1

pi(1 − oi,j)
j−1∏
k=0

oi,k ≤ 1 ⇒ pi(1 − oi,j)
j−1∏
k=0

oi,k → 0 as j → ∞.

Øi,j ∝ pi,j = pi(1 − oi,j)
j−1∏
k=0

oi,k → 0 as j → ∞.

128

3.8 Continuous Extension of the OR-Tree Model

We now consider an extension to the boxes case of the OR-tree search model

of Section 3.1, based upon the understanding of Ø as a reward rate. Graphing

time spent searching on the X-axis, and the probability that an object is

found on the Y-axis, the original model is represented below. Also shown is

a continuous representation. In this model, a box with constant reward rate

Ø may be searched for time v to reveal an object with probability Øv.

Figure 21: Continuous Extension of the Discrete Model

The boxes model of Section 3.1 has much in common with the continuous

model in which box type i has a constant reward rate, Øi, and may be

searched for a maximum time ti. The optimum policies for the two models

are identical, although the payoff is less for the continuous extension, because

of the possibility of finding an object before a whole box is searched.

129

3.8.1 Linear Precedence Constraints

The case of linear precedence constraints dealt with in Subsection 3.1.1 has

an immediate graphical interpretation. Consider the two boxes shown below.

The gradients of the lines de and ef are Ø(i,1) and Ø(i,2) respectively, so iff

Ø(i,2) > Ø(i,1), then point e lies strictly inside the convex hull of d, e and f,

in which case nodes (i, 1) and (i, 2) form a single indivisible block.

Figure 22: A Maximal Indivisible Block in the Continuous Case

By the same token, suppose further that stack i is charted in a similar

fashion. If the points d and f lie on the convex hull of all the points in the

stack, and this has different left- and right-gradients at these points, then

the indivisible block def is maximal.

130

3.8.2 Concurrent Searching

We now consider how the continuous case might usefully be widened to deal

appropriately with non-constant reward functions. Firstly, we note that if

a box has a reward rate which is some non-decreasing function, Ψ(t), of

the time spent searching that box, we can consider instead Φ(t), the convex

hull of the function Ψ(t), for the same reason that boxes may be chunked

into maximal indivisible blocks in the discrete case with linear precedence

constraints. If the new rate of a node is a strictly decreasing function of t,

we may wish to search that box for a vanishingly small period of time before

changing to another box, which is a theoretical annoyance. Accordingly, we

allow concurrent searching of boxes. Any number of boxes may be searched,

with varying intensities, i1, . . . in subject to the restriction that
∑

j ij = 1.

As an example of how this simplifies the description of the optimal policy,

suppose that two boxes are available for search, with decreasing reward rate

functions Φ(t) and Φ(Kt) respectively. The optimal policy in this case is

to search the boxes with respective intensities i1 = K/(K + 1) and i2 =

1/(K + 1), since this ensures that the reward rates of the two node types

remain equal as search progresses.

131

3.9 Shape of V ()

We now consider how V (x) varies in xi, by examining ∆V (x)i, defined as

the increase in the payoff from adding a node of type i:

∆V (x)i = V (x1, . . . xi−1, xi + 1, xi+1 . . . xn) − V (x)

The addition of an extra node of type i has two counteracting influences

on V ():

1. Decreasing V : The extra node or its descendants may con-

tain an object which can be relatively quickly found.

2. Increasing V : The extra node and its descendants must be

searched before it is possible to terminate and conclude no

object is present.

We now look at the net effect of these two influences. Observe that as

xi → ∞, the probability that the existing supply of type i nodes would be

exhausted tends to zero, and so both effects tend to zero. Hence ∆V (x)i → 0

as xi → ∞.

Let us assume for notational convenience that the node types are indexed

in order of decreasing Ø∗, so node type n minimises Ø∗. It is therefore

possible to deduce the following value for ∆V (x)n since we know that it is

optimal to search the extra node last of all.

V (x1, . . . xn−1, xn + 1) = V (x) + q(x)V (0, 0 . . . 0, 1)

= V (x) + q(x)t∗n

132

Hence : ∆V (x)i = q(x)t∗n > 0

Figure 23: Shape of ∆V (x)i for a Least Rewarding Node Type

As shown above, a least rewarding node type is always a liability. This

is not true for any node types with an adjusted reward rate strictly greater

than that of Ø∗
n. To see this, consider x = (0, 0 . . . 0, N), for large N . As

N → ∞, the probability of ever terminating without finding an object be-

comes vanishingly small, and so does the second effect of adding a node of

type i. The first effect, however, does not, and is non-zero since we required

type i to have a reward rate strictly greater than Øn.

To see that ∆V (x)i may have the shape as shown in Figure 24 overleaf,

consider adding boxes of type 1 to a state x, with V (x) > (Ø∗
1)

−1. The

optimal policy is to search the newly revealed boxes first, since they are of

type 1. Thus:

V (x1 + 1, x2 . . . xn) = t∗1 + q∗1V (x)

133

Figure 24: One Possible Shape of ∆V (x)i

∆V (x)1 = V ∗
1 − p∗1V (x) = t∗1(1 − Ø∗

1V (x))

The shape of ∆V (x)i may also have a turning point, as shown in Figure 25

below. Consider for example x = 0. For any node type i, ∆V (0)i < 0, since

V () is minimised at 0.

Figure 25: Second Possible Shape of ∆V (x)i

134

3.10 Summary

We have extended the branching bandits model of Weiss[88] in a number of

ways. The equivalence between the semi-Markov continuous discounting case

and the discrete case with transition dependent discounting highlighted in

Subsection 3.5.4 could be used to derive a simple proof of the Gittins index

theorem for discrete-time multi-armed bandits. The resulting proof would

have much in common with Tsitsiklis’ [85] proof for semi-Markov bandits.

The formulation of Ø as a reward rate and the discussion of overlook prob-

abilities makes clear that in certain circumstances, the case of a (countably)

infinite number of node types is tractable.

The non-constant ‘retirement function’ introduced in Section 3.6 is a pow-

erful innovation, since it allows for its application to practical situations in

which it is desirable to terminate search and make a decision based on its

findings before an exact result is known. Specification of a retirement func-

tion allows for more powerful control of the search. As an illustration of its

potential in the context of computer search, we note that it allows for a single

search to be efficiently conducted in parallel, by allowing dynamic allocation

and re-allocation of subsearches in accordance with findings.

Heuristic evaluations of nodes are commonly used only to determine which

is the best of a given set of positions. This frequent under-utilisation of the

information calculated means that the adoption of such an apparently sim-

ple evaluation function as that presented in Subsection 3.4.2 need not be as

restrictive as at first appears. A standard evaluation function H : x �→ R

135

might, for the purposes of search control be replaced by IH(x)>H(root). This

would separate out the positions into two classes, those which were an im-

provement on the current position and those which were the same or worse,

which would suffice for some purposes.

An ability to make rational decisions about whether to terminate the

search early seems likely to broaden the applicability of the model very con-

siderably, since there are many situations where the goal of search is not

to find an object but merely to discern as quickly as possible whether an

object exists. Suppose, for example that a batch of goods has been manu-

factured. It is clearly of great value to have a procedure to automatically

calculate whether the probability of eventual success is sufficient to warrant

continuation of a series of quality control tests.

As currently described, the model is limited to graphs with an out-tree

(or out-forest) structure. An obvious question is whether search of more

general DAG’s can be modelled in a similar fashion. The main problem with

such an extension seems to be that the model is based upon a state which

is a vector of scalars of fixed length. A more general DAG structure causes

difficulties with this representation since it becomes necessary to keep track

of previously searched branches.

136

	Dynamic Stochastic Control - A New Approach to Game Tree Searching, by
	Robin Upton
	3 OR-Tree Search
	3.1 Deterministic Case
	3.1.1 Linear Precedence Constraints

	3.2 Stochastic Case
	3.3 Nature of the Optimal Policy
	3.3.1 A Restriction on the Optimal Policy
	3.3.2 An Equivalence Between Search Problems
	3.3.3 Proof of Optimal Policy

	3.4 The OR-Tree Model in Practice
	3.4.1 Complexity and Ill-conditioning
	3.4.2 Optimal Search for Conspiracies of Size 1
	3.4.3 Mathematical Example
	3.4.4 Drug Testing Example
	3.4.5 Computer Software Example

	3.5 Bandits
	3.5.1 Gittins Indices
	3.5.2 Branching
	3.5.3 Search Problem Applications
	3.5.4 Link with OR-Tree Model

	3.6 Retiring Early
	3.6.1 Retire and Say “No”
	3.6.2 Retire and Guess
	3.6.3 Retire and Say “Yes”
	3.6.4 Other Retirement Functions

	3.7 Overlook Probabilities
	3.8 Continuous Extension of the OR-Tree Model
	3.8.1 Linear Precedence Constraints
	3.8.2 Concurrent Searching

	3.9 Shape of V()
	3.10 Summary

